Fire behaviour in insect damaged stands

Government of Alberta

Dave Schroeder, Alberta SRD Helpers:

Dana Hicks, BC MoFR
Brad Hawkes, CFS
Steve Taylor, CFS
Rick Kubian, Parks Canada

Background

In Canada 2 insects get the most attention:

Spruce Budworm

- -across Canada but major epidemics in eastern
- –Stocks (1987) describes test burns toward FBP fuel types

Mountain Pine Beetle

- BC and Alberta (so far)
- No FBP fuel type development
- ? How many have experience?

Rest of presentation will focus on pine beetle

Year Green attack in summer, tree dies

1 Needles turn orange following spring

- 1-3 Needles turn red summer following attack
 Needles fall over 2-3 yrs
- Small branches fall over 3-10 yrs

Dead boles fall in 10-20 yrs.
 Large surface fuel accumulation
 Regeneration of residual stand

Spatial extent

Red Attack – Dana Hicks (BC)

- Does not need a ground fire, can spot from crown to crown.
- Spotting to 300m on the first candle is common.

- Think about it as 20 metre standing grass, that responds to changes in moisture very quickly
- Influenced primarily by humidity and FFMC
- 91 FFMC threshold

Red Attack – Archer Lake

- 25 40% needles gone in 2009(ocular estimate).
- Red needle moisture similar to litter
- Duff moisture higher in red stands

Red Attack – Archer Lake

Government of Alberta

Video clip

Grey stages

Several studies suggest post red attack crown fire behaviour may not be worse (compared to unaffected stands)

Evidence:

Decrease in canopy fuel load due to needle cast No overall fuel build up effect detected in empirical data

Estimates:

Fire behaviour models indicate higher surface fire ROS but less active crown fire

- Page and Jenkins (2007)
- Tinker et al (2006)
- Simard et al (in press)
- ? Is Active crown fire a useful definition for grey attack fires with little crown material?

Grey stages: Years 3 - 10

Grey stages: Years 3 - 10

Grey stages: Years 10-20

- stem fall increases surface woody fuel loading
- increase in surface fire intensity and flame length understory
- vegetation (grass, herbs, shrubs) and residual trees may be released due to increased light levels and reduced competition.

Waterton National Park 20 years following MPB attack Photo: Canadian Forest Service

Moderate to steep slopes (30 deg used in fire behaviour calcs)

Heavy surface fuels from MPB 20 years ago.

Wrap up

- Drier fuels (needles, standing dead, dead and not all the way down)
- Head fire ROS does not seem to be a lot different.
- Head fire intensity is greater.
- Ember transport = BAD, Bark flakes in grey stage = REALLY BAD
 - Accelerate ROS (equilibrium prior to head fire arrival)
 - New fires
 - Critical for Community/Structure protection.
- Relaxed debris management rules make problem worse

Wrap up

- What happens in grey at high BUI's?
 - Soil degradation?
 - Greater carbon release?
- As a PB person I recommend more burns at low intensities (e.g. Mitchell Ridge)!
- Do we need to develop new fuel types or does ember transport override?